Advanced Data Structures for Olympiad
Programmers

Papangkorn Apinyanon

October 13, 2025

Olympiad in Informatics combines mathematical intuition and
data structure & algorithm knowledge. This guide aims to help
students prepare systematically for programming contests at the
regional, national, and international level.

“The joy of finding things out is the greatest pleasure there is.” — Richard
P. Feynman

Contents

1 Introduction 7
1.1 Spirit of OI Competitions 7
1.2 Prerequisite 8
1.3 Notation 8
1.4 Graph Theory 8

1.4.1 Graph Terminologies 9

2 Tricks, Data Structures, and Algorithms 11
2.1 Merge small tolarge 11
22 DSUontree—Sack, 12
2.3 Heavy-Light Decomposition 14
2.4 Centroid Decomposition 16
2.5 Edge Centroid Decomposition 19
2.6 Cartesian Tree 23
2.7 Persistent Segment Tree (copy-on-write) 24

2.7.1 Rectangle Sum 25
2.7.2 K-th Order Statistic 25
2.7.3 Tree Path Range Sum 26
2.8 Square Root Decomposition: Blocking 27
2.9 Square Root Decomposition: Batching 27
2.10 Mo’s Algorithm 28
2.10.1 Basic Mo’s — Subarray query 29
2.10.2 Rollback Mo’s. 31
2.10.3 Balancing the Time Complexity 33
2104 3D Mo's 34
2105 4D Mo's 36
2.11 Dynacon — Segment tree on Timeline 37
2.12 Parallel Binary Search 40
213 CDQ 41

6 CONTENTS

2.14 Minimum Stack — Minimum Deque 44

References 45

Chapter 1

Introduction

The International Olympiad in Informatics (IOI) is one of five international
science olympiads. It is essentially a programming competition. Contestants
are required to code in C++, solving three problems each day for two days.

The problems often require elegant mathematical intuition, observation,
and/or firm knowledge in data structures and algorithms.

The first IOI was held by UNESCO in Bulgaria in 1989. To participate
in the 101, one needs to be selected to represent their country. Each country
sends four students who compete individually.

The team selection test (TST) process differs for each country; however,
most countries’ processes share striking similarity.

1.1 Spirit of OI Competitions

Each problem presents a puzzle: modeling it mathematically, reasoning its
structure, and devising an efficient solution.

OI competitions are more than technical skill and knowledge; they test
one’s ability to think systemically and stay focused under the stressful contest
room. A huge part of contests is time management. With half an hour left
on the clock, would you try to fix a bug hidden in hundreds of lines of code,
or cut losses and move on to work on other problems?

The ability to make such choices defines medalists.

7

https://ioinformatics.org/

8 CHAPTER 1. INTRODUCTION

1.2 Prerequisite

This book does not aim to be a basic programming book — readers are
expected to have firm knowledge on graph theory; dynamic programming;
pointers and memory management; time complexity; standard data struc-
tures such as binary heap, balanced binary search tree; and standard algo-
rithms such as Dijkstra’s. Essentially, the target audiences are USACO Gold
and Platinum level coder — they are assumed to be proficient in using C
programming language and to know the basics of C++ standard template
library.

1.3 Notation

On a cartesian plane, the main horizontal axis that is the line y = 0 is called
the OX axis; O means the origin. The main vertical axis that is the line z = 0
is called the OY axis. Given a point P = (a,b) on the plane, we say that a,
the distance from the point to OY axis, is the abscissa of point P, and we say
that b, the distance from the point to OX axis, is the ordinate of point P.

On a cartesian space (3D), we have axes OX, OY, OZ. The plane contain-
ing OX and OY axes we call the OXY plane. Similarly the plane containing
OX and OZ axes is called the OXZ plane, and the plane containing OY and
OZ axes is called the OYZ plane. A point P = (a,b,c) on the space has
abscissa a, ordinate b, and applicate c. As there is no standard name for the
distance to from a point in fourth dimension to the OXYZ space, we call it
simply as the fourth coordinate.

When a set of IV objects with total order — such as integers between zero
and a billion — is given. We can provide a function from the each member
of the set into unique integer ID from 1 to N. This process we refer to as
discretization. Other sources may refer to it as coordinate compression.

All logarithms are in base-2 unless otherwise stated.

1.4 Graph Theory

Graphs are ubiquitous in informatics olympiads, modeling relationships, net-
works, and state spaces.

1.4. GRAPH THEORY 9

1.4.1 Graph Terminologies

Definition 1. A graph G = (V, E) consists of a set of vertices V and a set
of edges E.

We typically denote the order |V| = N and the size |E| = M.

e Directed vs. Undirected: In undirected graphs, edges are unordered
pairs {u,v}. In directed graphs (digraphs), edges are ordered pairs

(u,v).
« Weighted Graphs: Edges may have associated weights w(u,v).

e Degree: The number of edges incident to a vertex.

e Path and Connectivity: A path is a sequence of distinct vertices
connected by edges. A graph is connected if a path exists between every
pair of vertices. In digraphs, strong connectivity implies a directed path
between every ordered pair.

« Cycles: A closed path. A Directed Acyclic Graph (DAG) contains
no directed cycles.

Definition 2. A tree T is an acyclic connected graph.

A tree is a minimal connected graph, for deleting any edge cuts it into
two. A tree is a maximal acyclic graph, for adding any edge makes a cycle.
Given any two different vertices u,v in a tree, there is only one simple path
between the two vertices; we denote this path as u-v path. This property is
the most important one.

Definition 3. A rooted tree T is a tree with a vertex r chosen as root.

We say that u is an ancestor of v if and only if the r-v path contains u.
Consequently v is a descendant of u. The depth of a vertex u is the number
of edges in r-u path. We say that p is a parent of u if an edge (p, u) exists and
p is an ancestor of u. The subtree u is the tree induced by only descendants
of w.

Definition 4. The lowest common ancestor (LCA) of u and v in a rooted
tree is the vertex with maximum depth which contains both u and v in its
subtree.

Definition 5. Tree flattening On a rooted tree where vertices are num-
bered from 1 to N, running a depth-first-search process starting at the root

10 CHAPTER 1. INTRODUCTION

generates discovery time and exit time of each vertex. The discovery time of
a vertex u, denoted by dfn[u] or tin[u] is one plus the number of vertices
visited before it. The exit time of a vertex u, denoted by tout [u], is discov-
ery time of the vertex added by one less than the number of vertices in its
subtree. The discovery time list, dfn[], is a permutation of 1..N. Its inverse
permutation we call nfd[]; it satisfies nfd[dfn[u]l] = u for all vertex u.

Take any vertex u and consider the interval [dfn[u], tout[u]], the vertices
which discovery time belongs in the interval is precisely those in subtree w.

Chapter 2

Tricks, Data Structures,
and Algorithms

Conquering Standard Problems

A “standard task” refers to a task that meets one or more of the following
criteria: its solution can be easily found online, it lacks novelty, or it consists
of well-known techniques that require no significant insight.

Most tasks are unoriginal

For almost every task one may see in contest, there are some existing
tasks with close relation to it. The more problems one solves in practice,
the more likely they are to notice the relation. For example, [0124 mosaic
closely resembles ARC107E, which predates 101 2024.

The more advanced tricks and data structures you utilize, the fewer ob-
servations you need to make. This chapter introduces you to those.

2.1 Merge small to large

For each subtree, what would the state of a data structure be if only the vertices
in the subtree is in the data structure?
Problem 6 (CSES Distinct Color). On a tree rooted at node 1 where each
node u has its color C,, find for each subtree the number of distinct colors in
it.

Solution

Run a depth-first-search, for each node u we maintain an instance of
std: :set named S,. At the moment we leave a node u, S, shall contain all
the colors in its subtree.

11

https://oj.uz/problem/view/IOI24_mosaic
https://atcoder.jp/contests/arc107/tasks/arc107_e

12 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

We say that a child v of u is heavy if and only if the size of subtree v is at
least half the size of subtree u. A child v of w is light if it is not heavy. A node
either have zero or one heavy child. On our DFS(u) process, once we traversed
all of its children we do the following to adjust S, to its desired state: If u
has a heavy child A, inherit its set — don’t copy the set over, but change the
pointer S, to the set S directly — this can be done by S[u].swap(S[h]);
in C4++ — this operation takes constant time. Now for each light child v of
u, we iterate over everything in S, and insert them into S, in a brute-force
manner. Lastly, we insert C, to S,, and note the size of S, into answer,.

Lemma 7. This solution takes O(N lg* N).

Proof. The color element generated by each vertex u only gets moved up
O(lg N) time, for each time we move from a light child to its parent the size
of subtree in focus increases twofold. Hence, we do O(N lg N') moves in total.
An extra log factor is added by the std: :set.]

Problem 8 (CF600E — Lomsat Gelral). Given a tree rooted at 1, with each
vertex u is a color ¢,. We says that a color ¢ dominates subtree u if no color
appears has more occurance than ¢ does in that subtree. For each subtree,
print the sum of all of its dominating colors.

Solution Use a std::set of frequency, color pair. The set, being
a binary search tree, can fetch the highest frequency. Maintain the sum
of dominating colors in addition to it. Then apply merge small to large
technique.

2.2 DSU on tree — Sack

This trick is very closely related to Merge small to large, and some people
use the terms interchangeably; however, there is a striking difference between
them: We need one instance of data structure in Sack, instead of the N
instances in Merge small to large. The general theme is the same — For each
subtree, what would the state of a data structure D be if only the vertices in
the subtree is in the data structure?

Problem 9 (CSES Distinct Color). On a tree rooted at node 1 where each
node u has its color C,, find for each subtree the number of distinct colors in
it.

Solution First, we assume the colors are integers between 1 to N, dis-
cretize them if they are not. We can use a simple array to support these three

2.2. DSU ON TREE - SACK 13

operations in constant time: add an instance of a color, remove an instance
of a color, and count distinct colors. We were forced to use std: :set on the
Merge small to large solution, for the array would take O(N) memory and
we cannot have NN instances of it.

However, here is a trick that let us use one instance. We define heavy and
light child the same way. Run a depth-first-search DFS(u, keep) where keep
is a boolean. When leaving node u, the data structure should have already
seen the state where only the vertices in subtree u is put in. If keep is true,
it shall stays in that state as we leave the node; if keep is false, we shall clear
and empty the data structure before we leave the node.

After entering node u in the depth-first-search — D is at that time empty
— run DFS(v, false) for each of its light child v. D is still empty when
we are done. Then, run DFS(h, true) if u has a heavy child h. The data
structure now contains vertices in subtree h. We now iterate over all vertices
in subtree u that is not in subtree i and insert them into D). Precisely at this
point we visit the state of D when the vertices in subtree u are exactly those
in D — take note of the answer we want. Then if keep is false in the current
depth-first-search call, empty the data structure by removing everything.

Directly performing this trick and using the array as D solves this problem
in O(N1gN).

Lemma 10. This process performs O(Nlg N) add and remove operations
on D.

Proof. Fix a vertex x. Consider the unique path from x to the root.

A single vertex x is (re)inserted into D exactly when x lies in a light
subtree of some ancestor v while u is being processed. Each time this happens,
the size of the currently “kept” part of the tree (the heavy child’s subtree)
at that ancestor is at least twice the size of the light subtree containing x.
Therefore, moving up along the ancestors where x belongs to a light child,
the size of the context into which we merge at least doubles each time. The
doubling can occur at most [lg N | + 1 times.

Hence, each vertex participates in O(lg N) add (and matching remove for
the temporary light traversals) operations. Summed over all N vertices, the
total number of operations on D is O(N 1g N).]

Problem 11. All problems solvable with Merge small to large are solvable
with Sack. Refer to previous section for more practice problems.

14 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

2.3 Heavy-Light Decomposition

Heavy-Light Decomposition (HLD) is a technique for breaking a tree into
disjoint paths; so that any path query can be expressed as a small number
of contiguous segments in an array. It reduces path query problems to array
range uery one.

Motivation. In many problems we must process queries along paths
between two vertices—such as maximum edge weights. Traversing a path
directly is too slow for large N. HLD helps us look consider only O(lg V)
segments.

Concept. For each node, mark the edge to its largest subtree child as
heavy; all others are light. Heavy edges form chains that represent dense
parts of the tree; all chains end at a leaf node. Any root-to-leaf path crosses
at most lg NV light edges, for each move from a vertex to its light children
halves the size of the active subtree.

Heavy edges: solid blue
Light edges: dashed gray

Building the decomposition. Compute subtree sizes by DFS. For each
vertex, select its child with the largest subtree as heavy. Nodes connected
by heavy edges form a heavy path; each path has a head. Linearize the tree
by traversing heavy paths consecutively—this allows segment tree indices to
correspond to vertex order.

2.3. HEAVY-LIGHT DECOMPOSITION 15

DFS order: heavy-first numbering

Path queries. To query the path (u,v), repeatedly lift the deeper vertex
to the head of its chain, querying each contiguous segment until both vertices
lie in the same chain, where a final range query covers the remainder. Each
lift crosses one light edge, hence at most 21g N iterations.

vector<int> g[N];
int sz[N];

void dfs(int u, int p) {
depth[u] = depth[p] + 1;
par[u] = p;
sz[u] = 1;
for (auto &v: glul) if (v !=p) {
dfs(v, u);
sz[u]l += sz[v];
if (glul [0] == p or sz[v] > sz[glul [0]])
swap(g[ul [0], v);
}
}

void dfs2(int u, int p, int head) {
hld[u] = head ;
dfn[u] = timer++;
for (auto &v: glul) if (v != p)
dfs2(v, u);
out[u] = timer;

3

You can also find LCA by the same logic as path query. This is often
faster than the binary lift based method.

int lca(int u, int v) {

16 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

while (hld[u] != hld[v]) {
if (depth[hld[v]] < depth[hld[ul]) swap(u, v);
v = par[hld[v]];
}
return depth[u] > depth[v]? u: v;
}

int path_min(int u, int v) {
int ans = INT_MAX;
while (hld[u] != hld[v]) {
if (depth[hld[v]] < depth[hld[ul]) swap(u, v);
ans = min(ans, /* min of nodes with dfs order
in range [dfn[hld[ul], dfn[u]]
; can be done with segment tree */);
par[hld([v]];

v

3

ans

min(ans, /* min of nodes with dfs order between
dfnlul] and dfnl[v] */);
return ans;

}

K-th ancestor.
To find K" ancestor, just jump repeatedly until the answer lies in current
chain.
int kth(int u, int k) {
if (k >= depth[u]) return -1;
while(1) {
if (depth[u] - depth[hld[u]] >= k)
return nfd[dfn[u] - k];
k -= depth[u] - depth[hld[ul] - 1;
u = par[hld[ul]l;
}
}

2.4 Centroid Decomposition

Reduce a problem about all paths in the tree to only considering
the paths passing through a root.

Definition 12. Given a tree of order N, a vertex u is a centroid if, when u
and its incident edges are removed, none of the resulting trees exceeds N /2
nodes. A tree has one or two centroids.

2.4. CENTROID DECOMPOSITION 17

Figure 2.1: Example tree — B is its unique centroid.

Finding a Centroid

To find a centroid of tree T', choose arbitrary vertex a. Run a depth-first-
search rooted at a to find subtree size of each vertex. Then repeatedly do
following logic: start at a, look at children of current vertex, if any of them
have subtree size exceeding half the order of original tree, move to said vertex;
else, the current vertex is a centroid.

Centroid Decomposition Algorithm

Given a tree T', we want to find its centroid tree T+. To do that, find any
centroid u of the tree, this will be the root of T+. Remove u from 7', and for
each remaining component, recursively decompose them. Attach the root of
resulting trees of their decomposition into .

vector<int> g[N], centree[N];
int sz[N], dead[N];
void dfs(int u, int p) {

sz[u] = 1;
for (auto v: glul]) if (!dead[v] && v !'= p)
dfs(v, u),
sz[u]l += sz[v];
}

int findcen(int u, int p, int treesz) {
for (auto v: glul) if (!dead[v] && v != p && sz[v] * 2 > treesz)
return findcen(v, u, treesz);
return u;
}
int decom(int u) {
dfs(u, -1);
u = findcen(u, -1, sz[ul);
dead[u] = 1;

18 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

/* we can do a lot of things here ! */

for (auto v: glul]) if (! dead[v])
centree[u] .push_back(decom(v)) ;
return u;

¥

Figure 2.2: Centroid tree of the example.

Key Properties of Centroid Tree

Lemma 13. The recursion depth of DECOM() — which is the height of cen-
troid tree — is O(lg NV).

Proof. Fach recursive call halves the order of focused subgraph.]

Corollary 2.4.1. Each vertex in centroid tree has O(lg V) ancestors.

Lemma 14. Sum of subtree size over all vertices is O(N lg N).

Proof. A vertex contributes one to size of subtree of each of its ancestors; each
vertex contributes at most lg N to the sum. [

The following property is extremely useful when dealing with path infor-
mation tasks:

Let T be a tree and T" be its centroid tree. Then for all u—v paths in
T, there exists a unique node d(u,v) such that the union of (u,d(u,v)) and
(v,0(u,v)) paths in T is precisely the u—v path, and u, v belong to subtrees of
different children of d(u, v) in 7. That vertex is precisely the lowest common
ancestor of u and v in 7.

2.5. EDGE CENTROID DECOMPOSITION 19

This means each of the O(N?) possible simple paths is composed of two
among the O(N lg N) paths from vertices to their ancestors in the centroid
tree.

Applications

Problem 15. [OI11 race. Given a tree with weighted edges, find a path
such that the sum of its edge weights is exactly L. If multiple paths satisfy
this, choose one with the fewest number of edges.

Solution. Let the given tree be T" and its centroid tree be T'+. For each
level of decomposition, after we get the centroid ¢, we will consider all path
(u,v) satisfying 6(u,v) = c.

1. For each subtree C; of ¢ (i.e., components after removing w), perform
a DF'S to collect all distances from ¢ to nodes in C;.

2. Maintain an associative array (e.g. std::map) that records the min-
imum number of edges required to achieve a given path length from
w.

3. For every node x in the current subtree Cj, check if there exists a
distance d' in the map such that d + d’ = L, where d is the distance
from x to w. If such d' exists, update the answer with the sum of
corresponding edge counts.

4. After processing C;, add all its distances and edge counts into the map
so that subsequent subtrees can use them.

5. Clear the map when finishing all subtrees of w, and recursively process
each Cj.

Assuming L is sufficiently small that we can use an array instead of
std: :map, Since each level processes disjoint nodes and each node appears
in O(lg N) decompositions, the overall complexity is O(N lg N) — efficient
enough for N < 2 x 10°.

2.5 Edge Centroid Decomposition

Like point centroid, but cooler!

https://dmoj.ca/problem/ioi11p2io

20 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

In standard centroid decomposition, we recursively remove a vertex
whose removal splits the tree into components of size at most half of the
original. In edge centroid decomposition, however, we remove an edge
instead of a vertex.

Definition 16. An edge (u,v) in a tree T" of order N is called an edge centroid
if, when removed, the sizes of the two resulting subtrees differ as little as
possible; equivalently, it minimizes the size of the larger component.

Figure 2.3: Illustration of edge centroid decomposition: the red edge (A, B)
is the centroid edge that splits the tree into two balanced (as much as viable)
parts.

This decomposition defines a recursive structure similar to the centroid
tree, but using edges as separators instead of vertices.

Bound on Decomposition Depth

In vertex-based centroid decomposition, every recursive call processes a tree
of size at most N /2, ensuring logarithmic recursion depth O(lg V).
However, this bound does not hold for edge decomposition. Consider a
star graph of order N — removing any edge separates only one leaf from the
rest, reducing the size by 1. Thus, the recursion depth in worst case is O(V).

Figure 2.4: Star graph

2.5. EDGE CENTROID DECOMPOSITION 21

Binarizing the Tree

To ensure balanced splitting, we can binarize the tree — i.e. transform every
node into a binary structure by inserting auxiliary vertices. If every node in
the resulting tree has degree at most 3, it can be proven that there exists an
edge (u,v) whose removal results in two subtrees, each with size not exceeding
2N
For a formal statement, look up the FEdge-weight Tree Separator Lemma.
Hence, on a binarized tree, the recursion depth is bounded by:

O(log; 5 N) = O(lg N)

This ensures edge centroid decomposition achieves logarithmic height similar
to vertex-based decomposition.

@ —_— @

Figure 2.5: Binarizing the tree: replacing a high-degree vertex by auxiliary
nodes (gray) to ensure degree < 3.

Avoiding Dynamic Data Structures

Let us revisit I0I11 race, discussed in the previous section.

In vertex-centroid decomposition, we often use associative arrays (e.g.,
std: :map) to store the frequency of distances from the centroid. In the edge-
centroid approach, let (z,y) be the current edge centroid; we have only two
endpoints. Thus, we can compute distances from each endpoint separately
and use sorted arrays for efficient lookup.

https://oj.uz/problem/view/IOI11_race

22 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

1. Compute all distances from x and y to nodes in their subtree to arrays
A and B respectively. As the arrays shall be sorted, use breadth-first-
search to compute the distances.

2. Perform monotonic queue trick to find pairs (a, b) such that a +b = L.

As the subproblem where we only care about paths passing through the
root (i.e. the centroid) is now solved in O(N), the original problem can be
solved in O(N Ig N).

Edge Centroid Tree

In standard centroid decomposition, a vertex in the original tree share label
with the corresponding vertex in centroid tree; it works because the centroids
are vertices. As centroids are edges here, it is less straightforward to build a
centroid tree.

Say tree T has edge e = (x,y) as its centroid. If e is removed, T" will split
into T3, T} containing x,y respectively. We construct edge centroid tree 7'«
such that e will have a corresponding vertex in the T'x. Let’s denote that node
as 0(e), which is also the root of T. We store following informations in é(e):
X, y, leftchild, rightchild. In addition, of course, any data we wish
to store to solve the problem — as done in standard centroid decomposition.
leftchild, rightchild store the root of T'rx and Ty* respectively. If any
of T'x or Ty is a singleton tree, then its corresponding root in Tx* or Ty
need not store any data — it acts as a dummy vertex.

An advantage of edge centroid tree over standard centroid tree is that
each non-dummy vertex has exactly two children. This means we can do
pushup operation easily.

Problem 17. CF150E asks for a simple path with the maximal median edge
weight in a weighted tree.

Solution. Perform a binary search over the median value. For threshold
x, assign each edge weight:

w'(e) = +1, if w(e)'z x,
—1, otherwise.

Now the task reduces to finding whether there exists a path with nonnegative
total w'(e).
Using edge centroid decomposition:

https://codeforces.com/contest/150/problem/E

2.6. CARTESIAN TREE 23

o Let (z,y) be the current centroid edge.
 Collect distances from z’s side into A[], and from y’s side into B]].

o Instead of sorting, use BFS to fill A and B in nondecreasing order of
depth.

o Apply a monotonic queue trick to merge A and B, avoiding the lg N
factor from segment trees.

This yields an O(N lg? N) algorithm with low constants.

2.6 Cartesian Tree

A cartesian tree of array A[1..N] , denoted by C'(A) is defined as follows: if
A is empty, C'(A) is the empty tree; else, let ¢ be any argmax(A), we create
a vertex labeled i and make it the root of C'(A). Then, we assign C'(A;) as
the left child of ¢ and C'(As) when A; is the prefix of A ending right before i
and A, is the suffix of A starting right after i.

Some people use the term cartesian tree to mean Treap. In this book the
term cartesian tree exclusively belongs to what is described in this section
and the term Treap strictly means the balanced binary search tree.

i |1 2 3 45
Al |3 2 5 1 4

NIL NIL

o

Figure 2.6: Cartesian tree C'(A) for A = [3,2,5,1,4] In parentheses are the
corresponding indices in A.

~—

24 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

Building a Cartesian Tree in O(NIgN)

Build any data structure which can answer range maximum query over A —a
segment tree works. Then directly implements the recursive building process
from the definition of cartesian tree.

Building a Cartesian Tree in O(N)

Iterate over the array from left to right, maintaining a stack of the right chain
of C(A). As we consider A[i], pop the bottom of the right chain so long as
it is less than Ali], for A[i] shall not have it as a ancestor. Then insert Ali]
into the right chain, linking up pointers as needed.
int stk[N], top, k, i,

rs[N], 1s[N]; /* right and left child respectively */
for (int i = 1; i <= n; ++i) {

k = top;

while (k > 0 && Alstk[k]] < A[i]) --k;

if (k) rslstkl[k]] = i;

if (k < top) 1s[i] = stklk + 1];

stk[top = ++k] = 1i;
}
/* the root is at stk[1] */

Problem 18 (CEOI20 Fancyfence).

2.7 Persistent Segment Tree (copy-on-write)

In a segment tree of size IV, we only touches O(lg N) nodes in update function.
lg N is a small number — we have the memory to afford making new nodes
instead of editing the existing ones (in most case, at least).

Let us do exactly that, the update function take in one root of segment
tree, then return a new root, of new version of that segment tree.

We maintain an array root [0. .V] of pointers to the root for each version,
this way we can actually access each version. Version 0 is usually the empty
tree.

struct Node { int lc, rc; long long sum; } t[MAXM];
int root[MAXV], T; // T = nodes allocated

int update(int v, int 1, int r, int pos, int delta){
int w = ++T; // mew node

2.7. PERSISTENT SEGMENT TREE (COPY-ON-WRITE) 25

tlw] = tlv]; // copy fields
t[w] .sum += delta; // this segment contains pos
if (1 == r) return w;

int m= (1 + 1) > 1;
if (pos <= m)

t[w].1lc = update(t[v].lc, 1, m, pos, delta);
else

t[w] .rc = update(t[v].rc, m+l, r, pos, delta);
return w;

The update function here still takes O(lg V) time as in standard segment
tree, but each call takes O(lg V) space. This has tremendous applications,
some are described below.

2.7.1 Rectangle Sum

Given K points on cartesian plane, each one with integer weight. You have
() queries to answer; for i query, print sum of weight of points lying in the
rectangle with bottom-left coordinate at (a;, b;) and top-left coordinate at
(Ci, dl) .

Persistent segtree solves this problem in O(N 1lg N) time and space com-
plexity. First we sort the points by their abscissa such that 1 < j = x; <
xj. Create persistent segment tree representing range sum of weights over
the ordinates. The first version is an empty tree. The i"*:4 > 1 version has
the contribution of weight of point j for all 7 < ¢ at the ordinate y;. To
answer a query, find two versions (E, F') such that E' is the last version not
including any points with abscissa at least a; and F' is the last version not
including any points with abscissa more than ¢;. The answer for i query
then is Tp.query(b;, d;) — Tg.query(b;, d;). As the difference between the two
versions is exactly the segment tree we would get if we only add points having
abscissa between [a;, ¢;|, the abscissa condition is eliminated by the versioning
mechanism, and the ordinate condition is handled by the segment tree range
query itself.

2.7.2 K-th Order Statistic

Problem 19 (SPOJ MKTHNUM). Given array of integers A[| of length N.
Answer @) queries — for i, print the k" least element from the subarray

26 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

First, consider the subproblem where [; = 1. Construct a persistent seg-
ment trees where version i is version ¢ — 1 added by 1 at A[i]. We can take
the tree at version r; and do walk-on-segtree to find first z such that sum
from (—o0, 2] on the segment treeis not less than ;.

Now to solve the full problem, we can think of an imaginary segment
tree, where the sum attached to each node is exactly the difference of the
corresponding nodes in versions r; and [; — 1. That is the segment tree we
would get if we only add the elements from [l;,r;]. Now just walk on that
segment tree. Since the segment tree is not real, we have to modify our walk
function to take in two pointers. Time complexity is (N1g N+Q1lg N). Space
complexity is (N 1g N).

Given K points on cartesian plane, each one with integer weight. You
have () queries to answer; for i query, print sum of weight of points lying in
the rectangle with bottom-left coordinate at (a;, b;) and top-left coordinate
at (C,’, d,)

Persistent segtree solves this problem in O(N lg N) time and space com-
plexity. First we sort the points by their abscissa such that 1 < j = x; <
xj. Create persistent segment tree representing range sum of weights over
the ordinates. The first version is an empty tree. The i"*:i > 1 version has
the contribution of weight of point j for all 7 < ¢ at the ordinate y;. To
answer a query, find two versions (F, F') such that F is the last version not
including any points with abscissa at least a; and F' is the last version not
including any points with abscissa more than ¢;. The answer for i query
then is Tp.query(b;, d;) — Tg.query(b;, d;). As the difference between the two
versions is exactly the segment tree we would get if we only add points having
abscissa between [a;, ¢;|, the abscissa condition is eliminated by the versioning
mechanism, and the ordinate condition is handled by the segment tree range
query itself.

2.7.3 'Tree Path Range Sum

Problem 20 (SPOJ COT). Given a weighted tree of order N with @) queries
— for each query print & minimum weight on the simple path from u; to v;.

Solution Similar to MKTHNUM, make a persistent segment tree where each
vertex in a tree has its own version, derived from that of its parent and
modified by adding 1 to the position that is the weight of edge above it.
After building it, notice that the segment tree we would get if we only add in
the edges in u-v path is exactly the tree we would get by summing up these

2.8. SQUARE ROOT DECOMPOSITION: BLOCKING 27

three version: T, + 1, — 2 - Tj.,. Walk on segtree again, but this time with
three parameters.
Extra How to solve this problem if weights were on the vertices?

Problem 21. Given a tree with N vertices, each one having color between
1 and N, and a weight between 1 to 10°. Answer () queries — for i query
print the sum of weight of all vertices which lie on the simple path from wu;
to v; and which have color in between z; and v;.

Solution This is easier than the previous one, for you do not need to
walk on segment tree. Just query the sum and add them up!

2.8 Square Root Decomposition: Blocking

Square Root Decomposition (or sqrt-decomposition) is a classical
technique for achieving sublinear query time on static data. It divides the
array into blocks of size roughly v/ N and precomputes aggregated information
within each block.

Block 1 Block 2 Block 3 Block 4

Ao | A | Ay | As | Ay | A5 | Ag | A7 | As | Ao

Figure 2.7: Blocking

Given an array A[1..N], we partition it into blocks of size B ~ v/N. For
each block i, store a precomputed value, like the minimum of values in the
block.

To get minimum over range [[, r]: First, find blocks lying completely inside
the range and consider their precomputed values. Next, consider all remain-

ing elements in a bruteforce manner; there are at most 258 such elements.
This yields O(B + N/B) time per query, minimized when B = v/ N.

2.9 Square Root Decomposition: Batching

Batching refers to handling multiple operations at once using square root
decomposition — grouping updates or queries into batches of size about v/ N,
so that each batch can be processed efficiently as a whole.

Whereas blocking divides a data structure spatially, batching divides it
temporally.

28 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

Suppose we have () queries that modify or read the same array. Instead of
updating the array after every single query (which can be slow), we split the
() operations into 4/@ batches. Apply all updates within a batch together,
and buffer new updates.

Problem 22. We can maintain an array A[1..N] with @) operations:

e add(1l, r, x) — add x to every element in range [I, r],

e get(i) — query value at position .

Solution

To solve this, we maintain buffer — a list of pending updates. When a
new add command comes, put it in buffer. If size of buffer reaches 1/Q,
reconstruct the up-to-date version of A[] by using the new updates in buffer
and difference array — this is done in O(/N) — then clear buffer. To deal with
get (i) command, take sum = A[i], then for every pending updates which
cover i, add its value to sum. This gives a O(Q'® + Q"°N) solution.

Problem 23. There is a N by M grid of initially white cells, except one
black cell (s;,s,). Then N-M —1 queries (z;,y;) are given, each representing
a white cell. For each query, output the Manhattan distance to the nearest
black cell and mark that cell as black. Constraints: NM < 10°.

Solution

Naive idea. One could either run a full BFS again after each new black
cell is added, or explicitly check all existing black cells for nearest one each
time we want the distance. Both methods require processing all previously
updated cells repeatedly, resulting in O((NM)?) time overall.

Batching approach.
Group queries into batches of about v/ NM in size. After each batch,
perform a multi-source BF'S from all black cells so far to get up-to-date
distance table. To get the nearest black cell, look at the current distance
table, then consider all the black cells pending in the buffer. The amortized
complexity becomes O(NM~+/NM). This essentially merges the two naive
approaches — a recurring theme in square-root decomposition.

2.10 Mo’s Algorithm

Mo’s Algorithm is a variant of blocking. It trivialize many range query
problems, in its most basic form, it groups the queries by chunking one of
their endpoint.

2.10. MO’S ALGORITHM 29

2.10.1 Basic Mo’s — Subarray query

Problem 24. Distinct color query: Given array A[l..N] of positive integers
not exceeding a million. Answer) queries, where i*" query is [;, r;, print the
number of distinct elements in A[l..r]. N < 100000 and @ < 100000. Offline
processing is allowed.

> |

Figure 2.8: Mo’s algorithm path visualized

Solution Let us view the problem from a new perspective. Say we have
data structure D supporting three operations: add one instance x, remove
one instance of x, count distinct number in D. This can be implemented in
O(1) with an array and a counter.

Now imagine us moving on a cartesian plane where being at (z,y);x <y
means that D contains all the elements from A[z..y] and nothing else. If D
is empty, we can be at (i, — 1) for any ¢. To answer all queries, we need to
visit each of (;,7;). We can move from (x,y) to any of the valid 4-adjacent
cells in O(1): to move to (x + 1,y), do D.remove(A[z]); to move to

(x —1,y), do D.add(A[z — 1]); and similar for moving along OY axis.
Hence, moving from a point to another takes as many moves as their
Manhattan distance.

We want to travel and visit each of the queries (I;, ;) with sufficiently small
number of moves, for the number of moves is equal to the number of
operations we need to perform. The optimal path is hard to find, since that
is essentially the Hamiltonian path problem, but we can make a fairly good
approximation — there exists a simple construction giving O(Q\/N + NVN)
moves.

The construction is as follows: divide the indices (1..N) to blocks of size B

30 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

— there are N/B such blocks. Bucket the queries by |l;/B]|. To process a
block, move to the first point in the block — this take at most 2N moves.
Then, move over the points in increasing order of the ordinate. For each
point, we do at most B abscissa moves, and since we only move up and not
down, we do at most N ordinate moves for the whole block. There are at
most N /B + 1 blocks. Hence the total moves is upper bounded by

BLH (2N 4+ N) 4+ QB. Let B be /N, then the number of moves — and time

complexity of the solution — is in O(NvVN + Qv/N).

It seems convoluted, but the implementation is just a custom comparator
and moving endpoints around.

struct Query {
int 1, r, idx;
bool operator<(const Query& other) const {
if (1 / B != other.1 / B) return 1 < other.1;
return r < other.r;

};

const int MAXA = 1'000'000 + 5;
int N, Q, A[MAXN], freq[MAXA], ans[MAXQ];
int distinct = 0, id_ = 0;

auto add = [&] (int x) { if (++freq[A[x]] == 1) ++distinct; };
auto remove = [&](int x) { if (--freq[A[x]] == 0) --distinct; };

cin >> N >> Q;

for (int i = 1; i <= N; ++i) cin >> A[i];
vector<Query> q(Q);

for (auto &[1, r, id]l: @) cin >> 1 >> r, id = ++id_;

B = sqrt(N);
sort(q.begin(), q.end());

int L =1, R = 0;

for (auto [1, r, id] : q) {
while (L > 1) add(--L);
while (R < r) add(++R);
while (L < 1) remove(L++);
while (R > r) remove(R—-);
ans[id] = distinct;

by

for (int 1 = 0; i < Q; ++i)

2.10. MO’S ALGORITHM 31

cout << ans[i] << '\n';

Parity-based Tiebreaking

A practical optimization of Mo’s algorithm is to alternate the direction in
which queries are ordered inside each block of . Ordinarily, queries are
sorted by block index |¢/B| and then by increasing r, which causes the
right pointer to jump back to the start of the array between blocks.

If even blocks are sorted by increasing » and odd blocks by decreasing r, the
traversal is likely to be more smooth. This often halves the constant factor
of the algorithm on weak testsets.

2.10.2 Rollback Mo’s

Sometimes, the data structure D might not support deletion — only
rollback. Which means from (z,y) we can either undo the last move, or
move to (z,y + 1) and (z — 1,y).

To handle such cases, we use a variant called Rollback Mo’s algorithm. The
idea is to process queries grouped by their left endpoint block, just as before,
but reset the whole data structure after finishing all queries of one block.
Additionally, as rightward moves are not allowed, for each block we starts at
the first abscissa to the right of focused block, then temporarily extends to
the left and do rollbacks on D to handle the varying left endpoints.

Problem 25 (JOI14 Historical). Given array of integers

A[1..N];1 < A[i] < N and @ queries in the form (I;, ;). For i" query find
argmazgez x - |{j, A; = x}|.

Solution The basic Mo’s algorithm with a binary search tree can solve the
problem in O(N1?1g N); however, it can be solved in O(N'®) with Rollback
Mo’s. The data structure D here is a frequency array, max value of

(x - frequency of x), and the argmax. We cannot remove an element, for we
discard the non-maximum elements. D can be reset in O(N) time. The add
operation, and its rollback on D take O(1) time.

We solve for each block independently, resetting D afterward. To solve for
the block covering interval [start, end], we starts at the point (end + 1, end),
then process the points in that block in increasing order of ordinate —
performing upward moves. We still need to handle the elements in [I;, end)];
we do this by performing leftward moves from (end + 1,7;) to (I;,7;) just

32 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

Y 4

~

even blocks = r 1 odd blocks = r |

Figure 2.9: Parity-based tiebreaking

before we fetch the answers. After the answer to " query is obtained, we
rollback the changes until we are back at (end + 1,7;) — no rightward moves

are done here.

Problem 26 (SheepDev Round 1 — C). You are given a graph with N
vertices and M edge (parallel edges and loops are possible). Each edge has
an integer weight not exceeding 1000000000. The vertices are numbered 0
to N - 1. You must process (Q queries, each in form of pair “x y”. You shall
imagine a situation where every edges with weight less than x or more than

y is removed from the graph, then print the number of connected

component in the graph. Note that you are only imagining it, and no edges

2.10. MO’S ALGORITHM 33

actually get removed.

Solution Sort the edges, then each query is limiting the graph to using
only an interval of edges. Use Rollback Mo’s with disjoint-set-union to solve
it. Time complexity is O(N'1g N).

2.10.3 Balancing the Time Complexity

We do O(Qv'N) moves but fetch the answer merely Q times.

Problem 27. Given an array A of length N where each element is a
positive integer between 1 and N. For each query (l;,7;), determine whether
there exists a majority element in the subarray Al[l;..r;], i.e. a value that
occurs more than HTH times.

Solution.

We can achieve O(Nv/N) total time. Assume @ = O(N).

Notice that Mo’s algorithm executes O(Q\/N) moves but only @ heavy
queries, we can afford each query on the data structure to cost v N times
more than the add and remove operations while not affecting the overall
complexity.

We apply Mo’s algorithm to handle the (I;, ;) intervals. As usual, we
maintain a frequency array

freqlz] = [{j € [l,7] | Alj] = =}/

Each movement of the endpoints in Mo’s order adds or removes one element,
so the total number of add() and remove () operations is O(Nv/N).

To check whether a majority element exists in the current range, we need to
know whether some frequency exceeds "= Instead of scanning all values,

2
we maintain a histogram over the current frequency distribution:

bucket|k| = number of distinct values with frequency exactly k.

When we add or remove a value x, we update its frequency and adjust two
counters:

void add(int x) {
int f = freqlx];
bucket [f]--; // one fewer element with frequency f
blockSum[f / B]l--;
++freqlx];
++bucket [freq[x]]; // one more element with frequency f+1

34 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

++blockSum[freq[x] / Bl++;
}

where blockSum[i] stores the total number of elements whose frequencies
fall in the i-th block of size B ~ v/N. All these operations are O(1).

To answer a query, we simply check whether there exists any f > HT“
that bucket[f] > 0. This is done by scanning over frequency blocks:

such

bool hasMajority(int len) {

int threshold = len / 2 + 1;

int b = threshold / B;

for (int i = b + 1; i < numBlocks; ++i)
if (blockSum[i] > 0) return true;

for (int f = threshold; f < min((b + 1) * B, MAXF); ++f)
if (bucket[f] > 0) return true;

return false;

b

The query operation thus costs O(v/N), while updates remain O(1).
Complexity Analysis.

O(NVN) moves + Q - O(V'N) queries = O((N + Q)V'N).

The allowed O(v/N) time motivates a square-root decomposition approach.
We design the data structure as follows: block the integers from 1 to N into
blocks of size K. On insert(z) we calculate value of = as the chosen value —
if that value is the maximum in its block (that is block | |), we take note
of that maximum in the block. On query(a,b) operation, look at all blocks
which lie completely in [a, b], each of their maximum is an lower bound for
the answer. Then we look at each index on the border individually,

checking if their value is a tighter lower bound. Of course, we let
K = O(V/N) to obtain O(v/N) complexity.

2.10.4 3D Mo’s

Standard Mo’s algorithm is limited to static arrays. To handle point
updates, the algorithm is extended by adding a third dimension: time.

Problem 28. Dynamic distinct color query. Given array A[l..N] of positive
integers not exceeding a million. Answer () command, where i command
can be either ask(1_i, r_i): print the number of distinct elements in
All..r], or upd(p_i, x_i): change A[p;] to x;. N < 100000 and

@ < 100000. Offline processing is allowed.

2.10. MO’S ALGORITHM 35

next tower

first tower

_)N
9

—_——r A ———

Figure 2.10: 3D Mo’s algorithm in OXYZ space. Each query (¢,7,t) is rep-
resented as a point. The OXY plane is partitioned into blocks of size B x B
which extends in OZ axis, forming vertical towers. Within each tower, en-
larged query points are processed along a light-gray path.

Rather than a cartesian plane, now we imagine a 3D space. The
corresponding state of point (x,y, z) is that D contains only the elements
from Alxz..y] after the 2! command. Moving parallel to OX and OY axes is
done the same way as in static distinct color query. To move in the
direction of OZ axis, we can add and remove some elements from D. There
are O(1) such operations we have to do to move one step.

Since we can still move efficiently, it is a matter of finding a short enough
path. One way to do that is to divide both the OX and OY axes to blocks
of size B. We then process each "tower” — B X B square which expands
infinitely in OZ axis separately; at the start of each tower we reset D —
move it to the point with lowest applicate, then move our state as needed,
visiting all points contained in that tower in increasing order of applicate.
The time complexity is O(N/B)?*-Q + @ - B). That is minimized when
B~ N?3: O(N°3 + QN?3). If Q is O(N) then it is nicely O(N°/3). Guess
what the time complexity of 4D Mo’s would be!

Problem 29. SP0J - XXXXXXXX

https://www.spoj.com/problems/XXXXXXXX/

36 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

2.10.5 4D Mo’s

To deal with a 14-dimensional space, visualize a 3-D space and
say ’fourteen’ to yourself very loudly. FEveryone does it.

— Geoffrey Hinton

Problem 30 (Codeforces 1767F). Given a tree of order N rooted at vertex
1. Each vertex has integer v; written on it. Answer @) queries; the i query
is (u;,v;). To answer it, you shall collect all the vertices in subtrees u; and

v; then list the number written on those vertices — a vertex is listed twice if

it is in both subtree u; and v;. Then print the lowest mode in the list.
1 < N,Q,v; <200000.p

Solution Run a depth-first-search on the tree to obtain its DFS order.
Consider a 4D space (do not try imagining it). A point P = (x;, y;, 2, w;)
correspond to a state where the integer written on each vertex with
discovery time in [x;, ;] is put in the list, and then the integer written on
each vertex with discovery time in [z;, w;] is again put in the list. Apply
Mo’s algorithm. The data structure, which need to support adding and
removing one instance of an integer v;, and answering the minimum mode,
can be implemented in amortized constant time; the detail for its
implementation will be discussed later. As we have the data structure, now
we implement Mo’s algorithm on four dimensional space. We block the first
three axes. There will be in total (N/B)? tesseract-shaped buckets to
classify our points. The cross section of the each of those tesseract against
OXYZ space is a cuboid with side length B. and sort points in each by
their fourth coordinate. To move to a new tesseract we can either reset the
data structure or move back along the fourth dimension — both take O(N).
The time complexity adds up to O(NB + N*/B3). Selecting B = N
minimizes it.

Exercise 31. How to design the data structure? Hint: add(x) takes
constant time, remove (x) takes amortized constant time, and getmode ()
can take up to O(N-). Refer to subsection2.10.3.

2.11 Dynacon — Segment tree on Timeline

Offtine removal in non-amortized insert-only structures with an
extra log factor

2.11. DYNACON - SEGMENT TREE ON TIMELINE 37

The name Dynacon is not unanimous — many calls it that because applying
the trick to a disjoint-set union solves the dynamic connectivity problem.
Say we have data structure D and need to support () operations of these
types: insert(y), remove (i), ask(x) — where y and x are arbitrary data,
and remove (i) undo the insertion done in i"* query.

Let us build a segment tree with @) leaves, each vertex of the tree stores a
list (as in dynamic array) of data associated with insertion queries. For each
insertion query, find its lifetime — when it gets removed. If it never gets
removed, consider it removed at time () + 1. For insertion query with data
y to be inserted and lifetime [/, 7], we append y to each of the O(lg Q)
segment tree vertices making up the lifetime interval. Once we do that for
all insertion query, we can find the answer for all ask queries. Do a
depth-first-search down the segment tree, starting from the root. When
entering a vertex, apply all the updates attached to that vertex. Before
leaving a vertex, undo (stack-wise) all the updates attached to that vertex.
All non-amortized data structure can support the undo operation nicely —
just revert every modification made to the computer’s memory. After
entering a leave vertex associated with timestamp ¢, if t"* query is an ask
query, do a query on the current data structure and output the answer (or
memorize it). Of course, any insertion query is done O(lg @) times, so this
adds a log factor to the time-complexity:.

Problem 32 (SPOJ — DYNACON2). Dynamic Connectivity Problem:
maintain a graph; support adding edge, removing edge, and asking whether
a u-v path exists.

Solution The relation to Dynacon is obvious: each edge lives in a certain
time interval. We can use union-by-rank disjoint-set-union, which supports
undo, to maintain the connectivity.

int answer[Q];
vector<pair<int, int> > t[Q * 4];
void add(int v, int 1, int r, int x, int y, pair<int, int> edge) {
if (r < x || y < 1) return;
if (x<=1&& 1 <=7y) {
t [v] .push_back(edge) ;
return;
}
add(v * 2 +1, 1, 1 +r) / 2, x, y, edge);
add(v * 2 +2, (L +r) / 2+ 1, r, x, y, edge);
}
UndoableDSU ds;
void dfs(int v, int 1, int r) {

38 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

for (auto [a, b]: t[v]) ds.addedge(a, b);

if (1 ==1) {

if (query_typel[l] == "conn"
answer[1l] = ds.is_connected(ask_a[l], ask_b[1l]);
} else {

dfs(v *x 2 + 1, 1, (1 + 1) / 2);
dfs(v x 2 + 2, 1 +1r) / 2+ 1, r);
}

for (auto _ : t[v]) ds.undoQ);
}

Problem 33. Minimum range spanning tree: given a weighted graph, find
the minimum £ such that there exists a spanning tree where the difference
between maximum and minimum weight does not exceed k.

Solution There is an O(N 1g N) solution with link-cut tree, but

O(N lgZ N'lg A) can be done with Dynacon when A is range of edge weights.
First, consider this easier version: given k, is there Y such that the graph is
connected only by edges with weight in [Y,Y + k]? Notice that we can
consider only the value of edge weights as Y.

If we sort the edges, for each ¢, you find out what is maximal j > ¢ such
that we can use all edges from i to j if i'® edge is the minimum-weighted
one; let that j be f(i). Now we have N intervals of edges where both the
starts and ends are increasing — because f is increasing. We shall check if
any of those intervals are valid.

To do that, consider each interval as a timestamp. Each edge will be alive
in a consecutive time interval. Use Dynacon to find out if the graph is
connected in any timestamp. If it is, the current value of k is an upper
bound of the answer of our original problem. Do binary-search on answer!

Problem 34 (Codeforces 1217F). Maintain an initially empty graph on N
vertices under M queries. The queries are forced online using a variable
last € {0, 1}, which stores the result of the most recent connectivity check.
For a query on input coordinates x and y, the actual vertices are mapped
using the formula u = (x + last — 1) mod N + 1 and

v = (y+last — 1) mod N + 1.

The operations are:

1. Toggle Edge: Add the edge (u,v) if it does not exist, or remove it if
it does.

2.11. DYNACON - SEGMENT TREE ON TIMELINE 39

2. Connectivity Check: Determine if v and v are connected. Update
last with the result.

The objective is to output the results of all connectivity checks.

Solution This problem, despite its "online” encoding, can be solved by
converting it to an offline Dynamic Connectivity Problem. The constraint
that last can only be 0 or 1 means that every query affects one of only two
possible edges. This weakly encoded nature allows us to preprocess all
potential edge events. The hard part is to handle the edge ambiguity.

We first identify all unique potential edges. For each of the M queries, we
consider both possibilities for the last variable (last = 0 and last = 1),
generating up to 2M total potential events. We then group all events for
the same unique edge e = (u,v). If the edge e has potential to be toggled at
queries x1, o, ..., T, we compute its lifetime intervals:

(1, 29), [T9,23), .. ., [Tk—1, Tk), [k, M + 1]. These intervals are then mapped
to the nodes of the segment tree.

The key modification is the use of a global boolean array, active[-], which
tracks the true state (present or absent) of every unique potential edge. The
DEF'S traversal of the segment tree proceeds as follows:

1. Internal Node (v): When entering a node v, we iterate over all
potential edges whose lifetime intervals cover v’s time span. We only
apply the edge update to the DSU (via ds_unite) if the edge is
currently marked as active in the global active[-] array. This ensures
only truly existing edges are part of the structure at this time.

2. Leaf Node (t): When reaching a leaf node corresponding to query t:

o If tis a connectivity check (Type 2), we perform the DSU query
and update the global last variable for all subsequent queries.

o Iftis an edge toggle (Type 1), we use the current, correct value
of last to determine the real edge e*. We then toggle the state of
e* in the global active[-| array. This is the moment where the
online query is correctly decoded and its effect is registered for
the rest of the offline process.

3. Rollback: Just as normal Dynacon, when exiting node v we use the
DSU rollback mechanism to revert all temporary insertions,
maintaining the correct state for the sibling branch.

The overall time complexity is O(M lg N 1g M). Refer to ?? for the code.

40 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

2.12 Parallel Binary Search

Problem 35 (CSES New Road Queries). Given graph of order N and size
M where each edge is labeled from 1 to M. Answer @) queries (u;,v;). For
i" query print the minimal = such that there exists a path from u; to v,
using only edges with label not exceeding x.

Solution

A funny solution is to perform binary search for each query, and check the
connectivity with a disjoint-set-union. This takes O(QM lg Ma(N)) — each
query performs O(lg M) layer of checking, in each layer up to M edges is
added to the DSU.

Now we can reorder the process a bit; Check connectivity first layer of every
queries — which will share same mid = M / 2. Then check connectivity of
second layer of every queries — some to be checked at M / 4 and some at 3M
/ 4. Notice that if we add edges in the order of their labels, we only need
to go over the edge list once and not twice. i.e. we add edges with label not
exceeding M /4 then check all the queries that shall be checked at that
point, and then add remaining edges with label not exceeding 3M /4 then
check all the queries that shall be checked at that point. This way, we
spend O((Q + M)a(N)) on each layer of the binary search. Continue the
process until we know the answers to all queries. The total complexity is
O((Q + M)a(N)1g M).

; ; ; —— edge label x
edge 1 edge 2 edge 3 edge 4

4
DSU sweeps left — right once per layer

Figure 2.11: Parallel Binary Search with four edges and queries.

In Figure figure2.11, we have four queries A, B, C, D. Each horizontal
dashed line represents one layer of the parallel binary search — that is, one
complete left-to-right sweep of the edge list by the disjoint-set-union (DSU),
adding edges in increasing order of their labels.

2.13. CDQ 41

At the first layer, all queries check whether using the first two edges is
sufficient to connect their respective vertex pairs. After one DSU sweep, we
find that this range suffices for queries A and C, but not for B and D.

In the second layer, the remaining searches refine their ranges: queries A
and C' now test whether only the first edge is enough, while B and D test
whether the first three edges suffice. We again perform a single DSU sweep
— adding the first edge, checking A and C, then adding the second and
third edges, and checking B and D.

Exercise 36 (POI11 Meteors).

2.13 CDQ

More dimensions!!!

Problem 37. There exist N < 10° points P; = (x;,y;, ;) € Z. 3. We define
relation < as follows: (z,y,z2) < (2/,¢,2) <= sz <2’ ANy<y Nz< 7.
For each 1 <i < N, let f(7) be number of points 1 < j7 < N such that

P; < P;. Find f(i) for all 1 <¢ < N. To save us from the annoying details,
assume that all the abscissas are pairwise distinct. This is the 3D partial
order problem.

Solution 1: Bashing 2D point add rectangle sum data structure.
Iterate over the points in increasing order of x;. To find f(7), query the sum
of rectangle ((0,0), (y;, 2;)). Then add one to point (y;, z;). Time and space
complexity: O(N g N). This is fine but has huge constant and memory
usage.

Solution 2: CDQ. Start by sorting and points in increasing order of
abscissa. Let’s assume P is already sorted as such. We know that 1 < j is a
necessary condition for P; < P;. This motivates a divide-and-conquer
approach. To find the answer for points in P, we divide P into left and
right part of balanced size. Now for each point in the right part we consider
how many points in the left part is less than itself. Once we do that, the
left and right part becomes completely isolated and we can solve the two
subproblems.

The usual divide-and-conquer process is to combine the results of the two
subproblems; however, here it is more like count contribution between two
subproblems and divide. We do not relate the results of two subproblem in
any way. Now, to solve the count contribution part — what we shall solve is

42 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

essentially: given set A and B of points (y;, 2;) in a cartesian plane. For all
points in B (the right part), count the number of points in A which is less
than it. This is a standard problem which can be solved by offline
processing and one-dimensional Fenwick tree. Time complexity remains
O(N g N). However, space complexity is merely O(N), for we use one
dimensional range-add-range-sum structure here.

Generally, CDQ is highly useful in cutting off one dimension in a geometric
process at a cost of a log factor.

A

A

\ 1. Z3: Divide by X

< region

2. Zi: 2D Subproblem

»Y

Figure 2.12: CDQ visualization. Top: points in Zi split by X = ¢ (green
plane) into two subsets. Bottom: projection onto OYZ-plane forming the 2D
dominance subproblem.

2.14. MINIMUM STACK — MINIMUM DEQUE 43

Exercise 38 (APIO19_ street).
Exercise 39. Invent an O(N lg® N) solution to 4D partial order problem.

Exercise 40 (DarkBz0j3295).
Exercise 41 (ZJchH71).

2.14 Minimum Stack — Minimum Deque

push, pop, getmin

Let us design a stack which support these operations: push(x) pop()
getmin(). Where getmin() returns the minimum element in stack. This
can be implemented in same complexity as standard stack. Maintain two
stacks A, B; on a push(x) operation, push min(z, B.top) — or z if B is
empty — to B and push x to A. On pop() operation, do a pop on both A
and B. On getmin() operation, return B.top. Let us call this data
structure min-stack.

There is a standard technique for implementing a queue with two stacks.
Maintain stacks A and B. to do an enqueue operation, push to A. To
dequeue, if B is empty, repeated push the top of A to B then pop A, until
A is empty. Then return top of B. The amortized time complexity is
constant time per operation, for each element can only get moved from A to
B once. The intuition is that A stores some elements from the rear end of
the queue, and B stores the remaining elements.

If we use two min-stacks to implement a queue, we achieve a min-queue. Is
it possible to get min-deque? Yes, it turns out we can implement an
efficient deque with two stacks. It is almost identical to building a queue —
except we only move half the elements to the empty stack instead of the
entirety of the other stack. If we want to pop from B and it is empty, move
half top of A to it. If we want to pop from A and it is empty, move half top
of B to it. Now, by using min-stacks to build a deque, we achieve efficient
amortized min-deque!

https://darkbzoj.cc/problem/3295
https://zerojudge.tw/ShowProblem?problemid=c571

44 CHAPTER 2. TRICKS, DATA STRUCTURES, AND ALGORITHMS

Bibliography

[AtCoder Inc.(2025)] AtCoder Inc. Atcoder programming contest platform.
https://atcoder. jp/, 2025. Accessed 2025-10-11.

[Codeforces Community(2025)] Codeforces Community. Codeforces
competitive programming platform. https://codeforces.com/, 2025.
Accessed 2025-10-11.

[Driscoll et al.(1989)Driscoll, Sarnak, Sleator, and Tarjan| J. R. Driscoll,
N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures

persistent. Journal of Computer and System Sciences, 38(1), 1989. doi:
10.1016,/0022-0000(89)90034-2.

[e maxx and CP-Algorithms Contributors(2025)] e maxx and
CP-Algorithms Contributors. Cp-algorithms: Algorithms for
competitive programming. https://cp-algorithms.com/, 2025.
Translated and maintained by the competitive programming
community; Accessed 2025-10-11.

[Fenwick(1994)] P. M. Fenwick. A new data structure for cumulative
frequency tables. Software: Practice and Experience, 24(3), 1994. doi:
10.1002/spe.4380240306.

[International Olympiad in Informatics Committee(2025)] International
Olympiad in Informatics Committee. Official ioi website.
https://ioinformatics.org/, 2025. Accessed 2025-10-11.

[Luogu Community(2025)] Luogu Community. Luogu — chinese olympiad
in informatics online judge. https://www.luogu.com.cn/, 2025.
Accessed 2025-10-11.

45

https://atcoder.jp/
https://codeforces.com/
https://cp-algorithms.com/
https://ioinformatics.org/
https://www.luogu.com.cn/

46 BIBLIOGRAPHY

[OI Wiki Contributors(2025)] OI Wiki Contributors. Oi wiki — knowledge
base for olympiad in informatics. https://oi-wiki.org/, 2025.
Accessed 2025-10-11.

[0J.UZ Team(2025)] OJ.UZ Team. Oj.uz — online judge for olympiad
problems. https://oj.uz/, 2025. Accessed 2025-10-11.

[USACO Guide Team(2025)] USACO Guide Team. Usaco guide —
structured learning for competitive programming.

https://usaco.guide/, 2025. Accessed 2025-10-11.

https://oi-wiki.org/
https://oj.uz/
https://usaco.guide/

	Introduction
	Spirit of OI Competitions
	Prerequisite
	Notation
	Graph Theory
	Graph Terminologies

	Tricks, Data Structures, and Algorithms
	Merge small to large
	DSU on tree – Sack
	Heavy-Light Decomposition
	Centroid Decomposition
	Edge Centroid Decomposition
	Cartesian Tree
	Persistent Segment Tree (copy-on-write)
	Rectangle Sum
	K-th Order Statistic
	Tree Path Range Sum

	Square Root Decomposition: Blocking
	Square Root Decomposition: Batching
	Mo's Algorithm
	Basic Mo's – Subarray query
	Rollback Mo's
	Balancing the Time Complexity
	3D Mo's
	4D Mo's

	Dynacon – Segment tree on Timeline
	Parallel Binary Search
	CDQ
	Minimum Stack – Minimum Deque

	References

