
SheepDev Contest #1 - Editorial
===

A - Tree

100 คะแนน:
สังเกตกระบวนการ depth first search ดังกลาว

DFS(V):
push V to stack
for all children W of V:

DFS(W)
pop stack

จะเห็นวา ขณะเวลาที่เขา DFS(V) และยังไม push V จุดยอดบน stack ทัง้หมด
จะเป็นบรรพบุรุษของ V โดยเรียงตามความลึก (ไมรวม V)

ดังน้ันการแกปัญหาขอน้ีทําไดโดยเก็บกองซอน S สําหรับเก็บบรรพบุรุษ จากน้ันเปิดกอง
ซอน At[color] แยกสําหรับแตละสี

เมื่อเขา DFS(V) ใหใส V เขาบนกองซอน S และใสตําแหนงของ V บน S ลงบน
กองซอน At[C[V]] และกอนออกจาก V ใหนําตัวบนสุดของกองซอนทัง้สองออก

สําหรับการตอบคําถาม เมื่อเขา DFS(V) กอนที่จะใส V ลงกองซอนใดๆ ใหดูกอง
ซอน At[C[V]] หากวางอยู คําตอบคือ 0 แตหากไมวาง ใหดูตัวบนสุดใน
At[C[v]] แลวตอบ S[1 + Top of At[C[v]]]

Time complexity - O(N)
Memory complexity - O(N + max C[])

SheepDev Contest #1 - Editorial
===

B - A-K Query

ปัญหายอยที ่1 (20 คะแนน):
เน่ืองจาก N, Q <= 10, 000 สามารถทํา O(NQ) ได โดยสําหรับคําสัง่

รูปแบบแรก ใหทําตรงๆบนอาเรยดวยลูปไดเลย และสําหรับคําสัง่รูปแบบสอง สามารถ
สรางสําเนาของอาเรยยอยที่ตองการ และใชอัลกอริทึม quick select
(std::nth_element ใน standard library C++) บนสําเนาน้ัน เพื่อตอบตัวที่
k
อยางไรก็ตามโคด O(NQ log N) ที่ใชการเรียงสําเนาตรงๆสามารถผานไดเชนกัน

ปัญหายอยที ่2 (30 คะแนน):
เงื่อนไขของปัญหายอยน้ีคือ ทุกๆคําสัง่ประเภทที ่1 จะมากอนคําสัง่ประเภทที่ 2

ดังน้ันสามารถแบงปัญหาเป็นสองสวน และทําแตละสวนในลักษณะ offline ได

สวนคําสัง่ประเภทที ่1
ตองการทราบคาของอาเรยสุดทายที่ไดหลังการทําคําสัง่ประเภทที ่1

ทุกอัน ซึ่งสามารถทําไดหลายแบบ
- lazy segment tree
- sweep line (ใหแตละคําสัง่เป็น <timestamp, value, left,

right> และหาคาของชองปัจจุบันโดยดูคําสัง่ที่ timestamp มากสุดในโครงสราง
ขอมูล เชน heap/binary search tree)

-* Chtholly tree ซึ่งจะใชในปัญหายอยถัดไป
โดยเก็บลําดับของชวงติดกันที่มีคาเหมือนกันในอาเรย

ในรูปแบบ <l, r, val> และสามารถเก็บใน binary search tree เชน
std::set ได ในการทําแตละคําสัง่ (ql, qr, k) สามารถทําโดยพิจารณาทุกชวง
ที่อยูในชวงของคําสัง่ แลวไลลบชวงเหลาน้ันออก จากน้ันใส <ql, qr, k> ลงใน
set

(กอนจะลบ: หากบางชวง <l, r, val> ตัดกับ [ql, qr] ในลักษณะน้ี
 ---------l------ql-------r----------------qr

สามารถลบ <l, r, val> ออก และใส <l, ql - 1, val>, <ql, r,
val> ลงไปแทน)

ถึงการไลลบชวง จะทําตรงๆ แตโดยเฉลี่ยแลวจะใชเวลา O(q log q)
เน่ืองจากแตละคําสัง่จะเพิ่มจํานวนชวงมาไมเกิน 2 ดังน้ันจํานวนชวงที่ถูกลบจะไมเกิน
2q

สวนคําสัง่ประเภทที ่2
หลังจากไดอาเรยที่เป็นผลลัพธจากการทําคําสัง่ประเภทที ่1 หมดแลว

การตอบตัวที่นอยสุดเป็นลําดับที่ k เป็นปัญหาคลาสสิกซึ่งทําไดหลายวิธี (merge sort
tree/persistent segment tree/wavelet tree/offline + fenwick
tree)

(https://www.spoj.com/problems/MKTHNUM/)

ปัญหายอยที ่3 (50 คะแนน):
แกโดยการใช Chtholly tree และ 2D segment tree

โดยพิจารณาจุดบนระบบพิกัดสองมิติ

เมื่อชวง <l, r, val> บน Chtholly tree
ถูกพล็อตลงบนจุด <l, val> และจุดน้ันมีน้ําหนักเป็นความยาวของชวง =
r - l + 1
จากพล็อตจุดในลักษณะดังกลาวแลว การตอบคําสัง่ประเภทที ่2 <ql, qr> ทําไดโดย
หาคา x
นอยที่สุด ที่ทําให สี่เหลี่ยมที่มีจุดลางซายเป็น <ql,0> และมีจุดบนขวาเป็น <qr,x>
มีผลรวมน้ําหนักมากกวา k

(หากมีชวง <l, r, val> ที่ตัดกับ <ql, qr> ตองแกไขโดนแบงเป็นสอง
ชวงดังในปัญหายอยกอนหนากอน)

การหาคา x ดังกลาวทําไดโดยใช 2D segment tree และ binary search
บนมิติที่สอง

การทําคําสัง่ประเภทที ่1 ทําบน Chtholly tree เหมือนปัญหายอยกอนหนาไดเลย
แตทุกครัง้ที่มีการลบหรือเพิ่มชวงลงใน Chtholly tree จะตองลบหรือเพิ่มจุดที่ถูก
พล็อตใน segment tree ดวย

Time complexity: O(q lg^2(max k))
Memory Complexity: O(q lg^2(max k))

*สําหรับขอมูลเพิ่มเติมเกี่ยวกับ Chtholly tree ดูไดที่ https://
codeforces.com/blog/entry/56135

#include <stdio.h>
#include <set>
#include <stdlib.h>

#define N 100000
#define Q 100000
#define K 100000
#define N_ (1 << 17)

int n_, n, q, tt[N_ << 1], ii;
struct {int a, l, r;}t[N*18*18];

void add2(int p,int k,int&i,int l,int r){
if(!i)i=++ii;
t[i].a+=k;
if(l==r)return;
if(p<=(l+r)/2)add2(p,k,t[i].l,l,(l+r)/2);
else add2(p,k,t[i].r,(l+r)/2+1,r);

}
void add(int p,int p2,int k){

for (p+=n_;p;p>>=1)add2(p2,k,tt[p],0,K);
}
int v_[99],o;

void gennodes(int l,int r){
o=0;
for(l+=n_-1,r+=n_+1;l^r^1;l>>=1,r>>=1){

if(l&1^1)v_[o++]=tt[l^1];
if(r&1)v_[o++]=tt[r^1];

}
}

int walkwalkwalk(int l,int r,int k){
if(l==r)return l;
int suml=0;
for(int j=0;j<o;++j)suml+=t[t[v_[j]].l].a;
if(suml>=k){

for(int j=0;j<o;++j)v_[j]=t[v_[j]].l;
return walkwalkwalk(l,(l+r)/2,k);

}
else {

for(int j=0;j<o;++j)v_[j]=t[v_[j]].r;
return walkwalkwalk((l+r)/2+1,r,k-suml);

}
}

struct node {
mutable int l,r,v;
bool operator<(const node&o)const{return l<o.l;}

};
std::set<node>chtholly;
std::set<node>::iterator split(int i){

auto it=chtholly.lower_bound(node{i, 0, 0});
if(it!=chtholly.end()&&it->l==i)return it;
auto iy=std::prev(it);
node x=*iy;
add(x.l,x.v,-(x.r-x.l+1));
add(x.l,x.v,i-x.l);
add(i,x.v,x.r-i+1);
chtholly.erase(iy);
chtholly.insert(node{x.l,i-1,x.v});
return chtholly.insert(node{i,x.r,x.v}).first;

}

int main() {
scanf("%d%d", &n, &q);
for(n_=1;n_<=n;n_<<=1);
chtholly={{0,n-1,0},{n,n,0}};
add(0,0,n);
for (int op, s, t, k, i = 0; i < q; ++i) {

scanf("%d%d%d%d", &op, &s, &t, &k);
if (op == 1) {

auto itr=split(t+1),itl=split(s);
for(auto it=itl;it!=itr;++it)

add(it->l,it->v,-(it->r-it->l+1));
chtholly.erase(itl,itr);
chtholly.insert(node{s,t,k});
add(s,k,t-s+1);

} else {
split(t+1); split(s); gennodes(s,t);
printf("%d\n",walkwalkwalk(0,K,k));

}
}

return 0;

}

SheepDev Contest #1 - Editorial
===

C - Suitable Weights

ปัญหายอยที ่1 (20 คะแนน):
สามารถเขียนจําลองสถานการณตรงๆไดเลย
Time complexity: O((N+M)Q) หรือ O((N+M)Q logQ) หากใช DSU

ปัญหายอยที ่2 (30 คะแนน):
นําคําถามมาเรียงตาม y จากนอยไปมาก และนําเสนเชื่อมมาเรียงตามน้ําหนัก

จากนอยไปมาก จากน้ันหาคําตอบโดยไลคําถามตามลําดับที่เรียง แลวใสเสนเชื่อมที่มีน
◌ํ้าหนักนอยกวาเทากับ y ของคําถามปัจจุบัน

สามารถทําไดดวย Disjoint Set Union
Time complexity: O(M log M + Q log Q + Q log N)

ปัญหายอยที ่3 (50 คะแนน):

นําเสนเชื่อมในกราฟมาเรียงตามน้ําหนักจากนอยไปมาก สังเกตวาแตละคําถาม
จะมีเสนเชื่อมที่ไมถูกลบ ติดกันเป็นชวง [l, r]

เลือก B เป็นคาที่เหมาะสม
หากความยาวของชวงที่ถาม (r - l + 1) ไมมากกวา B

ใหใช DSU with rollback ในการตอบคําถามไดเลย ใชเวลา O(B log N) ตอ
คําถาม

จากน้ันพิจารณาคําถามที่ชวงที่ถามยาวกวา B

แบงเสนเชื่อมที่เรียงแลวเป็นบล็อค บล็อคละ B เสน
ให belong[i] แทนหมายเลขบล็อคที่เสนเชื่อมที่ i อยู
สําหรับคําถาม [l, r] ใหนําคําถามที่มีคา belong[l] เหมือนกันจับกลุมกัน

จากน้ันสําหรับทุกๆ N / B บล็อค ที่บล็อค k จะหาคําตอบสําหรับคําถามที่
belong[l] = k โดยนําคําถามเหลาน้ีมาเรียงตาม r จากนอยไปมาก

block K	block K + 1

เน่ืองจาก r - l + 1 > B เรารูวา r จะอยูบล็อคทางขวาของ K แนๆ

หลังเรียงคําถามแลว สามารถเก็บ ptr_r โดยเริ่มแรกเทากับหมายเลขของคําถาม
แรกที่อยูบล็อค K + 1 และไลคําถาม [l, r], เมื่อ ptr_r <= r ใหใสเสนเชื่อม
ที่ ptr_r ลงใน DSU เมื่อใสจน ptr_r = r + 1 แลวสังเกตวา DSU ของเรามี
เสนเชื่อมที่ตองการใน [l, r] แตยังขาดเสนเชื่อมในบล็อค K ไป ดังน้ันสามารถไล
เสนเชื่อมในบล็อค K ที่เราตองการ และใสลงใน DSU จากน้ันตอบคําถาม [l, r]
บันทึกไว แลวลบเสนเชื่อมในบล็อค K ที่เพิ่มมาออก (ดวย DSU rollback)

เมื่อประมวลผลคําถามในบล็อค K ครบแลว สามารถ reset DSU ไดเลย เพื่อ
ประมวลผลบล็อคถัดไป

Time complexity : O(N^2log N / B + NB logN)
เมื่อให B มีคาประมาณ N ^ 0.5 จะได Time complexity = O(N^1.5 logN)

(เมื่อพิจารณาวา O(Q) ~ O(M) ~ O(N))

*การทําดังกลาว เป็นรูปแบบหน่ึงของ Mo’s Algorithm

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <vector>
#include <algorithm>

#define N 70000
#define Q 70000
#define M 70000

#define B 200
#define MB (M / B + 5)

int n, m, q, a[M], b[M], c[M], a_[M], b_[M], c_[M], ii[M], ans[M]
, bel[M], l[Q], r[Q];

std::vector<int> tag[MB];

struct dsurollback {
int cmp, ds[N];
int stamp, roll1[M + 1], roll2[M + 1], roll3[M + 1];

void reset() {
stamp = 0;
cmp = n;
memset(ds, -1, sizeof ds);
memset(roll1, -1, sizeof roll1);

}

int find(int i) {
return ds[i] < 0 ? i : find(ds[i]);

}
void unite(int i, int j) {

++stamp;
i = find(i), j = find(j);
if (i == j) return;
if (-ds[i] < -ds[j])

i ^= j, j ^= i, i ^= j;
roll1[stamp] = i;
roll2[stamp] = j;

roll3[stamp] = ds[j];
ds[i] += ds[j];
ds[j] = i;
--cmp;

}
void rollback() {

if (! ~roll1[stamp]) {
--stamp;
return;

}
int i, j, dsj;
i = roll1[stamp], j = roll2[stamp], dsj = roll3[stamp];
ds[i] -= dsj;
ds[j] = dsj;
roll1[stamp] = -1;
--stamp;
++cmp;

}
int count() {

return cmp;
}

} dsu;

int main() {
scanf("%d%d%d", &n, &m, &q);
for (int i = 0; i < m; ++i) {

scanf("%d%d%d", a_ + i, b_ + i, c_ + i);
ii[i] = i;

}
std::sort(ii, ii + m, [](int i, int j) { return c_[i] < c_[j]; });
for (int i, i_ = 0; i_ < m; ++i_) {

i = ii[i_];
a[i_] = a_[i], b[i_] = b_[i], c[i_] = c_[i];

}

for (int i = 0; i < m; ++i)
bel[i] = i / B;

dsu.reset();
for (int x, y, i = 0; i < q; ++i) {

scanf("%d%d", &x, &y);

int ll, rr;
ll = -1, rr = m;

for (int j = 1 << 17; j; j >>= 1)
if (ll + j < m && c[ll + j] < x)

ll += j;
for (int j = 1 << 17; j; j >>= 1)

if (rr - j >= 0 && c[rr - j] > y)
rr -= j;

++ll, --rr;

if (ll > rr) {
ans[i] = n;
continue;

}

if (rr - ll + 1 <= B) {
for (int j = ll; j <= rr; ++j)

dsu.unite(a[j], b[j]);
ans[i] = dsu.count();
for (int j = ll; j <= rr; ++j)

dsu.rollback();
} else {

l[i] = ll, r[i] = rr;
tag[bel[ll]].push_back(i);

}
}

for (int i = 0; i * B < m; ++i) {
dsu.reset();
std::sort(tag[i].begin(), tag[i].end(), [](int i, int j) {

return r[i] < r[j];
});
int ptr = i * B + B;
for (auto j : tag[i]) {

while (ptr <= r[j])
dsu.unite(a[ptr], b[ptr]), ++ptr;

for (int k = i * B + B - 1; k >= l[j]; --k)
dsu.unite(a[k], b[k]);

ans[j] = dsu.count();
for (int k = i * B + B - 1; k >= l[j]; --k)

dsu.rollback();
}

}

for (int i = 0; i < q; ++i)
printf("%d\n", ans[i]);

return 0;
}

